165 research outputs found

    Cooperative secretions facilitate host range expansion in bacteria

    Get PDF
    The majority of emergent human pathogens are zoonotic in origin, that is, they can transmit to humans from other animals. Understanding the factors underlying the evolution of pathogen host range is therefore of critical importance in protecting human health. There are two main evolutionary routes to generalism: organisms can tolerate multiple environments or they can modify their environments to forms to which they are adapted. Here we use a combination of theory and a phylogenetic comparative analysis of 191 pathogenic bacterial species to show that bacteria use cooperative secretions that modify their environment to extend their host range and infect multiple host species. Our results suggest that cooperative secretions are key determinants of host range in bacteria, and that monitoring for the acquisition of secreted proteins by horizontal gene transfer can help predict emerging zoonoses

    Superantigens from Staphylococcus aureus induce procoagulant activity and monocyte tissue factor expression in whole blood and mononuclear cells via IL-1beta.

    Get PDF
    Background: Staphylococcus aureus is one of the most common bacteria in human sepsis, a condition in which the activation of blood coagulation plays a critical pathophysiological role. During severe sepsis and septic shock microthrombi and multiorgan dysfunction are observed as a result of bacterial interference with the host defense and coagulation systems. Objectives: In the present study, staphylococcal superantigens were tested for their ability to induce procoagulant activity and tissue factor (TF) expression in human whole blood and in peripheral blood mononuclear cells. Methods and results: Determination of clotting time showed that enterotoxin A, B and toxic shock syndrome toxin 1 from S. aureus induce procoagulant activity in whole blood and in mononuclear cells. The procoagulant activity was dependent on the expression of TF in monocytes since antibodies to TF inhibited the effect of the toxins and TF was detected on the surface of monocytes by flow cytometry. In the supernatants from staphylococcal toxin-stimulated mononuclear cells, interleukin (IL)-1beta was detected by ELISA. Furthermore, the increased procoagulant activity and TF expression in monocytes induced by the staphylococcal toxins were inhibited in the presence of IL-1 receptor antagonist, a natural inhibitor of IL-1beta. Conclusions: The present study shows that superantigens from S. aureus activate the extrinsic coagulation pathway by inducing expression of TF in monocytes, and that the expression is mainly triggered by superantigen-induced IL-1beta release

    The Effects of Two Types of Sleep Deprivation on Visual Working Memory Capacity and Filtering Efficiency

    Get PDF
    Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers)

    The diagnosis and management of neuropathic pain in daily practice in Belgium: an observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This open, multicentre, observational survey investigated how physicians diagnose neuropathic pain (NeP) by applying the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) scale, and how neuropathic pain conditions are managed in daily practice in Belgium.</p> <p>Methods</p> <p>Physicians were asked to complete the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) scale for diagnosing NeP, and to fill out a questionnaire regarding the management of NeP, together with a questionnaire evaluating the impact of pain on sleep and daily life. Data on 2,480 pain patients were obtained. A LANSS score β‰₯ 12 (meaning NeP is most probably present) was reported for 1,163 patients. Pathologies typically associated with NeP scored above 12 on the LANSS scale, contrary to pathologies generally considered as being of non-neuropathic origin.</p> <p>Results</p> <p>Over 90% of the patients with a LANSS score β‰₯ 12 reported that the pain impaired sleep. A high impact on social, family and professional life was also recorded. Additional examinations were performed in 89% of these patients. Most patients were taking multiple drugs, mainly paracetamol and non-steroidal anti-inflammatory drugs, indicating that physicians generally tend to follow treatment guidelines of chronic nociceptive pain, rather than the specific ones for NeP. Specific neuropathic guidelines rather recommend the use of anti-epileptic drugs, tricyclic antidepressants or weak opioids as first-line treatment.</p> <p>Conclusion</p> <p>In our survey, application of the LANSS scale lead to pronounced treatment simplification with fewer drug combinations. Awareness about NeP as well as its specific treatment recommendations should be raised among healthcare providers. We concluded that the LANSS screening scale is an interesting tool to assist physicians in detecting NeP patients in routine clinical care.</p

    A Novel Core Genome-Encoded Superantigen Contributes to Lethality of Community-Associated MRSA Necrotizing Pneumonia

    Get PDF
    Bacterial superantigens (SAg) stimulate T-cell hyper-activation resulting in immune modulation and severe systemic illnesses such as Staphylococcus aureus toxic shock syndrome. However, all known S. aureus SAgs are encoded by mobile genetic elements and are made by only a proportion of strains. Here, we report the discovery of a novel SAg staphylococcal enterotoxin-like toxin X (SElX) encoded in the core genome of 95% of phylogenetically diverse S. aureus strains from human and animal infections, including the epidemic community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 clone. SElX has a unique predicted structure characterized by a truncated SAg B-domain, but exhibits the characteristic biological activities of a SAg including VΞ²-specific T-cell mitogenicity, pyrogenicity and endotoxin enhancement. In addition, SElX is expressed by clinical isolates in vitro, and during human, bovine, and ovine infections, consistent with a broad role in S. aureus infections of multiple host species. Phylogenetic analysis suggests that the selx gene was acquired horizontally by a progenitor of the S. aureus species, followed by allelic diversification by point mutation and assortative recombination resulting in at least 17 different alleles among the major pathogenic clones. Of note, SElX variants made by human- or ruminant-specific S. aureus clones demonstrated overlapping but distinct VΞ² activation profiles for human and bovine lymphocytes, indicating functional diversification of SElX in different host species. Importantly, SElX made by CA-MRSA USA300 contributed to lethality in a rabbit model of necrotizing pneumonia revealing a novel virulence determinant of CA-MRSA disease pathogenesis. Taken together, we report the discovery and characterization of a unique core genome-encoded superantigen, providing new insights into the evolution of pathogenic S. aureus and the molecular basis for severe infections caused by the CA-MRSA USA300 epidemic clone

    Progression to AIDS in South Africa Is Associated with both Reverting and Compensatory Viral Mutations

    Get PDF
    We lack the understanding of why HIV-infected individuals in South Africa progress to AIDS. We hypothesised that in end-stage disease there is a shifting dynamic between T cell imposed immunity and viral immune escape, which, through both compensatory and reverting viral mutations, results in increased viral fitness, elevated plasma viral loads and disease progression. We explored how T cell responses, viral adaptation and viral fitness inter-relate in South African cohorts recruited from Bloemfontein, the Free State (nβ€Š=β€Š278) and Durban, KwaZulu-Natal (nβ€Š=β€Š775). Immune responses were measured by Ξ³-interferon ELISPOT assays. HLA-associated viral polymorphisms were determined using phylogenetically corrected techniques, and viral replication capacity (VRC) was measured by comparing the growth rate of gag-protease recombinant viruses against recombinant NL4-3 viruses. We report that in advanced disease (CD4 counts <100 cells/Β΅l), T cell responses narrow, with a relative decline in Gag-directed responses (p<0.0001). This is associated with preserved selection pressure at specific viral amino acids (e.g., the T242N polymorphism within the HLA-B*57/5801 restricted TW10 epitope), but with reversion at other sites (e.g., the T186S polymorphism within the HLA-B*8101 restricted TL9 epitope), most notably in Gag and suggestive of β€œimmune relaxation”. The median VRC from patients with CD4 counts <100 cells/Β΅l was higher than from patients with CD4 counts β‰₯500 cells/Β΅l (91.15% versus 85.19%, pβ€Š=β€Š0.0004), potentially explaining the rise in viral load associated with disease progression. Mutations at HIV Gag T186S and T242N reduced VRC, however, in advanced disease only the T242N mutants demonstrated increasing VRC, and were associated with compensatory mutations (pβ€Š=β€Š0.013). These data provide novel insights into the mechanisms of HIV disease progression in South Africa. Restoration of fitness correlates with loss of viral control in late disease, with evidence for both preserved and relaxed selection pressure across the HIV genome. Interventions that maintain viral fitness costs could potentially slow progression

    Impaired Release of Antimicrobial Peptides into Nasal Fluid of Hyper-IgE and CVID Patients

    Get PDF
    Patients with primary immunodeficiency (PID) often suffer from frequent respiratory tract infections. Despite standard treatment with IgG-substitution and antibiotics many patients do not improve significantly. Therefore, we hypothesized that additional immune deficits may be present among these patients.To investigate if PID patients exhibit impaired production of antimicrobial peptides (AMPs) in nasal fluid and a possible link between AMP-expression and Th17-cells.Nasal fluid, nasopharyngeal swabs and peripheral blood mononuclear cells (PBMCs) were collected from patients and healthy controls. AMP levels were measured in nasal fluid by Western blotting. Nasal swabs were cultured for bacteria. PBMCs were stimulated with antigen and the supernatants were assessed for IL-17A release by ELISA.In healthy controls and most patients, AMP levels in nasal fluid were increased in response to pathogenic bacteria. However, this increase was absent in patients with common variable immunodeficiency (CVID) and Hyper-IgE syndrome (HIES), despite the presence of pathogenic bacteria. Furthermore, stimulation of PBMCs revealed that both HIES and CVID patients exhibited an impaired production of IL-17A.CVID and HIES patients appear to have a dysregulated AMP response to pathogenic bacteria in the upper respiratory tract, which could be linked to an aberrant Th17 cell response

    Interferon Gamma-Dependent Intestinal Pathology Contributes to the Lethality in Bacterial Superantigen-Induced Toxic Shock Syndrome

    Get PDF
    Toxic shock syndrome (TSS) caused by the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes is characterized by robust T cell activation, profound elevation in systemic levels of multiple cytokines, including interferon-Ξ³ (IFN-Ξ³), followed by multiple organ dysfunction and often death. As IFN-Ξ³ possesses pro- as well as anti-inflammatory properties, we delineated its role in the pathogenesis of TSS. Antibody-mediated in vivo neutralization of IFN-Ξ³ or targeted disruption of IFN-Ξ³ gene conferred significant protection from lethal TSS in HLA-DR3 transgenic mice. Following systemic high dose SEB challenge, whereas the HLA-DR3.IFN-Ξ³+/+ mice became sick and succumbed to TSS, HLA-DR3.IFN-Ξ³βˆ’/βˆ’ mice appeared healthy and were significantly protected from SEB-induced lethality. SEB-induced systemic cytokine storm was significantly blunted in HLA-DR3.IFN-Ξ³βˆ’/βˆ’ transgenic mice. Serum concentrations of several cytokines (IL-4, IL-10, IL-12p40 and IL-17) and chemokines (KC, rantes, eotaxin and MCP-1) were significantly lower in HLA-DR3.IFN-Ξ³βˆ’/βˆ’ transgenic mice. However, SEB-induced T cell expansion in the spleens was unaffected and expansion of SEB-reactive TCR VΞ²8+ CD4+ and CD8+ T cells was even more pronounced in HLA-DR3.IFN-Ξ³βˆ’/βˆ’ transgenic mice when compared to HLA-DR3.IFN-Ξ³+/+ mice. A systematic histopathological examination of several vital organs revealed that both HLA-DR3.IFN-Ξ³+/+ and HLA-DR3.IFN-Ξ³βˆ’/βˆ’ transgenic mice displayed comparable severe inflammatory changes in lungs, and liver during TSS. Remarkably, whereas the small intestines from HLA-DR3.IFN-Ξ³+/+ transgenic mice displayed significant pathological changes during TSS, the architecture of small intestines in HLA-DR3.IFN-Ξ³βˆ’/βˆ’ transgenic mice was preserved. In concordance with these histopathological changes, the gut permeability to macromolecules was dramatically increased in HLA-DR3.IFN-Ξ³+/+ but not HLA-DR3.IFN-Ξ³βˆ’/βˆ’ mice during TSS. Overall, IFN-Ξ³ seemed to play a lethal role in the immunopathogenesis of TSS by inflicting fatal small bowel pathology. Our study thus identifies the important role for IFN-Ξ³ in TSS
    • …
    corecore